Volume 11 Issue 01

2024

 

STUDY ON THE VIOLATION BEHAVIOR OF PEDESTRIANS AT INTERSECTIONS

Archa G, Geena Maria S, Kalathil Vishal sen, Varsha Roy, Dr. M. Satyakumar | pp: 1-8 | Download Paper | Show Abstract

Abstract:Pedestrian violation behaviors at intersections have become significant concern in India. These behaviors include jaywalking, crossing against signal and crossing outside of the designated crosswalks. Such behaviors can result in serious accidents and fatalities for pedestrians and motorists alike. This study aims to investigate the factors that contribute to pedestrian violation behaviors at two intersections, a signalized and a non-signalized intersection at Thiruvananthapuram. The study uses the combination of observational data as well as videographic surveys to collect information about pedestrian behavior and the data collected is analyzed using SPSS software. The study also aims in finding location specific factors like inadequate pedestrian infrastructure, drivers riding through footpaths and vehicles stopping at crosswalks. By addressing these factors, it is possible to reduce pedestrian violations and promote safer pedestrian behavior at intersections. Thus, this study aims in contributing to the development of a safer and more sustainable urban environment in Thiruvananthapuram and other rapidly growing cities in India.

separator

STUDY ON THE EFFECT OF STEEL FIBRES ON REINFORCED CONCRETE BEAMS WITHOUT STIRRUPS

Anjana Binoy, Jinta John | pp: 9-11 | Download Paper | Show Abstract

Abstract: Reinforced concrete beams are structural elements that designed to carry transverse external loads. Stirrups are mainly provided for holding the primary reinforcement of beam. It prevents the buckling of beam and protect the RCC structure during seismic activity. The addition of steel fibres to concrete has significant effect of tensile strength and modulus of elasticity. The steel fibres were added of different percentages by total volume of beam. Different shapes of steel fibres were added. It have the advantages of saving time, money, and labour. Steel fibres are provided for improving the flexural strength of concrete beam without the need of stirrups. Different shapes of steel fibres provide increased coverage and excellent bonding to reduce cracking.

separator

LSTM-RNN Based Identification of Fake Profile in social media

Abirami S, Abinaya S, Divya Sruthi R, Gurupriyadharshini R | pp: 12-18 | Download Paper | Show Abstract

Abstract: The increasing prevalence of fake profiles in social media has become a major concern for users and platform operators alike. In this work, we propose an LSTM-RNN based system for fake profile identification in social media. Our model is trained on a large dataset of real and fake profiles, allowing it to learn the patterns and characteristics that distinguish between them. The performance of our model was evaluated on a validation dataset and found to be highly accurate.

separator

EXPERIMENT AND SIMULATION STUDY ON REINFORCED GEOPOLYMER CONCRETE SLAB UNDER IMPACT LOADING

S. Krishna Kumari, Minna Roselin Cherian | pp: 19-36 | Download Paper | Show Abstract

Abstract: Geopolymer concrete is an eco-friendly material that has the potential to replace conventional cement-based concrete. Geopolymers are inorganic aluminosilicates and can be used to replace cement. In this study, Geopolymer concrete is produced by mixing Ground Granulated Blast Furnace Slag (GGBS), Fly Ash (FA), Silica Fume (SF), alkaline mixture, fine aggregate, and coarse aggregate. Strength is imparted to geopolymer concrete through polymerization in alkaline media. The alkaline solution consists of NaOH and Na2SiO3 in the ratio of 1:2.5. A proper geopolymer mix was selected by testing among multiple sets of cube, cylinder, and prism specimens of different geopolymer mixes. The Geopolymer Mixes selected were 50% GGBS + 40% FA + 10% SF, 60% GGBS + 30% FA + 10% SF, 70% GGBS + 20% FA + 10% SF, and 80% GGBS + 10% FA + 10% SF. Each mix was cast for three molarities 8M, 12M, and 16M of NaOH solution. 70% GGBS + 20% FA + 10% SF mix with 16M NaOH solution (Na2SiO3/NaOH =2.5:1) showed the best performance in terms of compressive strength and flexural strength. It was found that the compressive strength and flexural strength increased with molarity. The splitting tensile strength increased with an increase in GGBS percentage. Workability decreased with increasing molarity. All Geopolymer Concrete (GPC) mixes showed better performance than M30 mix conventional concrete. Hence 70% GGBS + 20% FA + 10% SF mix with 16M NaOH solution was selected for further study of the GPC slab. Five Reinforced Geopolymer Concrete (RGPC) slabs were casted and their dynamic performance were studied under impact loading. A series of drop hammer impact tests were carried out to investigate the impulse of RGPC slabs under a single impact. The variation of the peak impact force of slab under varying drop heights and varying reinforcement ratios were studied experimentally. The impact force’s time history and the slab surface’s failure characteristic were recorded. In addition, a parametric study was conducted using numerical models based on the finite element method (FEM) considering parameters: drop height, reinforcement ratio, depth of slab, and location of impact. The study observed that RGPC has the potential to replace concrete as a structural material.

separator

Design of an Electronically Tunable CMOS Band Pass Filter

Manish Rai, Raj Senani, Abdhesh Kumar Singh | pp: 37-41 | Download Paper | Show Abstract

Abstract: This paper presents a CMOS band pass filter (BPF) design having provisions for independent electronic control of center frequency and bandwidth both. The topology is based upon the employment of two current feedback operational amplifiers which are currently finding favor of analog designers as an alternative to the classical voltage mode op-amps because of several advantages ofered by them. A CMOS voltage controlled floating resistance circuit is the other key element which has been employed to replace the center-frequency-controlling and bandwidth-controlling resistors in the considered configuration. The usefulness of the proposed design has been varified by the simulations on CADENCE SPICE by implementing the complete circuit using a CMOS CFOA alongwith the CMOS VCRs with 0.18µm CMOS technology parameters. Simulation results are given to estabilish the viability of the proposed design.

separator

DESIGN OF AN ENERGY EFFICIENT BUILDING : A SUSTAINABLE APPROACH

Aswathy Mohan, Arjun R Nair, Jibin Mathew Saji, Aiswarya V Aji | pp: 42-46 | Download Paper | Show Abstract

Abstract: The project aims at the design of an energy efficient building taking into consideration of various criteria’s. The preliminary objective of this paper is to reduce the energy consumption of an existing building with minimum cost, wastage and environmental impacts. Passive Energy Management principles are adopted to achieve the sustainable design of the building. Steps to be undertaken are as follows – choice of appropriate software, incorporating the concept of building orientation, building envelop design, passive solar design and energy performance analysis with various factors like climate, site conditions, building use and space allotted.

separator

REPLACEMENT OF COARSE AGGREGATE USING WASTE CERAMIC- MARBLE PIECES,FINDING DURABILITY

Broziageorgevarghese | pp: 47-51 | Download Paper | Show Abstract

Abstract: As a result of the expanding growth and innovation in the construction industry around us, natural aggregate prices have increased tremendously. Solid waste production from building demolitions has also increased significantly. Studies show that a portion of the waste marble-ceramic tile production facilities create is changed and thrown. This waste material ought to have been put to better use in order to reduce building waste and deal with the limited supply of natural aggregate. Electric insulators, sanitary fittings, ceramic tiles, uneven bricks and other materials that are commonly wasted throughout the building and development process are all easily recycled in the construction industry. Similar to how ceramic-marble wastes can also be used as a partial substitution for coarse aggregate, ceramic tile powder can be utilised as a fine aggregate. Both coarse and fine aggregates can be substituted with crushed waste ceramic -marble and crushed waste ceramic tile powder. Here, marble-ceramic waste broken tiles were used to replace 0 percent, 20 percent, 40 percent, 60 percent, 80 percent, and 100 percent of the coarse aggregates. This experimental study looks into the viability of employing waste ceramic tile in concrete in addition to the coarse ceramic tileM30 was created and tested for this. Broken tiles were substituted for coarse aggregates and cement at varying percentages to construct the mix design for various types of mixes. Workability, compressive strength, split tensile strength, and flexural strength tests for various concrete mixes including varied amounts of crushed garbage have been completed after 7, 14, and 28 days of curing. Conditions for durability are also being tested. It has been found that workability increases as the percentage of broken tiles replaced increases. When ceramic-marble coarse aggregate is utilised, the strength of concrete can be increased by up to 80%.

separator

STUDY OF FOAM CONCRETE SLABS WITH REINFORCED MESH

Eldho Mathew Abraham, Jinta John | pp: 52-56 | Download Paper | Show Abstract

Abstract: Foamed concrete, Foamed concrete, also known as foamed concrete or lightweight concrete, the composition mainly are water, cement, fine aggregate, fly ash, etc. It is made by processing various admixture materials. When making, the materials are processed through physical or chemical methods. Light-weight aerated concrete (LAC) is produced by addition of a gas-forming admixture like aluminium powder (AP) to a wet mortar mixture. In concrete during curing, AP will react with the calcium hydroxide in the mixture to form hydrogen. The amount of gas-forming is dependent on the mechanical properties’ requirements. Because of its light weight, good thermal insulation performance, sound insulation and fire resistance, good overall performance, low elasticity and shock absorption, strong waterproof performance, convenient production and processing, good environmental performance, convenient construction, etc. it is mostly used as slope-finding for roof insulation, ground insulation cushion, foundation pit feeling of upturn beams, precast wall a, infill panels and wall pouring. The study with lightweight slabs is investigated in three cases – (1) LWC slabs with steel wire mesh reinforcement, (2) LWC slabs with fiber mesh reinforcement, (3) LWC slabs with combined fiber mesh and glass fiber. In this study, performance of slabs in different mesh reinforcement is monitored. This study is focusing on the formation of lightweight slabs with suitable and sustainable reinforcement.

separator

ANALYSIS OF CONCRETE FILLED CFRP TUBE

Aparna Jacob, Aivin Thambi, Vishal Thomas, Aalfiya Haris, Mariamol Kuriakose | pp: 57-61 | Download Paper | Show Abstract

Abstract: Reinforced concrete is used as a structural material for construction of buildings, harbours and dock piles in many marine locations. Structures located in coastal regions frequently suffer from corrosion phenomena. Corrosion is one of the basic factor that constitutes the degradation of reinforced concrete (RC) structures. The ingression of chloride ion into the RC structures leads to the premature failure of in-service structures. A study on structural performance deterioration of marine RC structures affected by rebar corrosion in Kozhikode was conducted. To address this vexed question, Concrete Filled CFRP tubes (CFCFRP Tubes) can be introduced in marine regions due to its superior corrosion resistance. CFCFRP tubes are composite members which consists of a hollow CFRP tube infilled with concrete. In this structure CFRP tube provides lateral confinement to concrete core. At the same time, the concrete core prevents the CFRP tube from local buckling. In this study, the comparative analysis of RC Column, Concrete Filled Steel Tubes (CFST columns), CFRP Ring Confined CFST columns and CFCFRP Tubes is done by considering buckling and dynamic loading in ABAQUS Software. From these results it can be concluded whether CFCFRP Tubes can be used as piers in marine environment. Considering the future scope, CFCFRP Tubes can also be used as piles in offshore structures.

separator

SUSTAINABLE CONCRETE WITH SALINE WATER AND GROUND GRANULATED BLAST FURNACE SLAG (GGBS)

Aleena Fathima, A.P. Prasanthi, Aiswarya Sivan, Lijumon, Dr. Elizabeth C Kuruvilla | pp: 62-66 | Download Paper | Show Abstract

Abstract: To conserve fresh water and make concrete production more sustainable, a study was carried out by using seawater and brine as the source of water and Ground Granulated Blast-furnace Slag (GGBS) as partial replacement of cement. Concrete samples having five different percentages of cement and GGBS contents were separately prepared with normal tap water, brine, and seawater. The seawater was obtained from Kovalam in Kerala. Compression and Rapid Chloride Permeability Test (RCPT) tests were conducted and their performance was analyzed and compared. The results obtained show that brine and seawater have higher compressive strength when compared to the potable water sample. The reduction in carbon footprint by the use of GGBS as part replacement of cement was also found in the study.

separator

A Review of Fake News Detection in Social Media: Techniques and Challenges

Anju K S, Ashfana K N, Sajal Saumian, Alex Jose, Anumol Antony P R, Deepasree Varma P, Soosan Francis | pp: 67-72 | Download Paper | Show Abstract

Abstract: Fake news has become a major issue in social media, posing a significant threat to the spread of misinformation and social unrest. The detection and prevention of fake news have thus become a crucial research area, leading to the development of various techniques and algorithms. This paper presents a comprehensive review of fake news detection in social media, highlighting the different types of fake news, detection techniques, and challenges faced by researchers. The study emphasizes the importance of understanding the characteristics of fake news and the role of social media platforms in their spread. It further discusses the various techniques used for fake news detection, such as machine learning, natural language processing as well as their strengths and limitations. The review also identifies the challenges of detecting fake news, such as the lack of labeled datasets, the dynamic nature of social media, and the diversity of languages used. Finally, the paper concludes with a discussion of future research directions and the need for collaboration among researchers, social media platforms, and policymakers to combat the spread of fake news.

separator

Synthesis and characterization of Al-ion battery material as a potential substitute to Li-ion battery material

Advaith Kaikini, Nishant M. George, Dalton Pinto, Reghu. V. R | pp: 73-77 | Download Paper | Show Abstract

Abstract: Li-ion battery is the most popular secondary battery at present. Introduced in the market three decades ago, it is still facing many challenges. Difficulties in handling due to its high reactivity, environmental and over-heating issues, power density and energy density related challenges are some of them. Moreover, the limited global supply of Lithium demands substantial and sustained research works to find a substitute for lithium that possesses the desired electro-chemical characteristics to serve the battery materials research field. After extensive literature survey on synthesis of anode materials, a potential anode composite material was identified that comprised of a compound based on antimony (Sb), graphite(C) and aluminium (Al). The chosen composition was weighed accurately and ball milled for 60 hours with the goal to synthesize a newer material phase by mechanical alloying. Samples were removed after ball milling for 20 hours, 40 hours and 60 hours. In order to characterize the change in the ball milled powder particle morphologies with ball milling time, the particles were analyzed with respect to milling time by using a Scanning Electron Microscope (SEM); phase change if there was any was assessed by X-Ray diffractometry (XRD), and the homogeneity of the composition based on the progressive milling was inspected by using Energy Dispersive Spectroscopy (EDS) associated with the SEM. The electronic conductivity is expected to increase when the particle size becomes finer and the composition becomes homogeneous. The results showed very encouraging morphological changes with progress in milling time. The samples will go through electronic conductivity test using an impedance analyser, and the suitability as an electrode for a high capacity secondary battery would be analysed at later stages in this research work and are not included in this paper.

separator